Inertia-Controlling Methods for General Quadratic Programming
نویسندگان
چکیده
Active-set quadratic programming (QP) methods use a working set to define the search direction and multiplier estimates. In the method proposed by Fletcher in 1971, and in several subsequent mathematically equivalent methods, the working set is chosen to control the inertia of the reduced Hessian, which is never permitted to have more than one nonpositive eigenvalue. (We call such methods inertia-controlling.) This paper presents an overview of a generic inertia-controlling QP method, including the equations satisfied by the search direction when the reduced Hessian is positive definite, singular and indefinite. Recurrence relations are derived that define the search direction and Lagrange multiplier vector through equations related to the Karush-Kuhn-Tucker system. We also discuss connections with inertia-controlling methods that maintain an explicit factorization of the reduced Hessian matrix.
منابع مشابه
On the Identification of Local Minimizers in Inertia-controlling Methods for Quadratic Programming∗
The verification of a local minimizer of a general (i.e., nonconvex) quadratic program is in general an NP-hard problem. The difficulty concerns the optimality of certain points (which we call dead points) at which the first-order necessary conditions for optimality are satisfied, but strict complementarity does not hold. One important class of methods for solving general quadratic programming ...
متن کاملAn iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملA New Mathematical Approach based on Conic Quadratic Programming for the Stochastic Time-Cost Tradeoff Problem in Project Management
In this paper, we consider a stochastic Time-Cost Tradeoff Problem (TCTP) in PERT networks for project management, in which all activities are subjected to a linear cost function and assumed to be exponentially distributed. The aim of this problem is to maximize the project completion probability with a pre-known deadline to a predefined probability such that the required additional cost is min...
متن کاملSufficient global optimality conditions for general mixed integer nonlinear programming problems
In this paper, some KKT type sufficient global optimality conditions for general mixed integer nonlinear programming problems with equality and inequality constraints (MINPP) are established. We achieve this by employing a Lagrange function for MINPP. In addition, verifiable sufficient global optimality conditions for general mixed integer quadratic programming problems are der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 33 شماره
صفحات -
تاریخ انتشار 1991